Semi-Supervised Learning for Integration of Aerosol Predictions from Multiple Satellite Instruments

نویسندگان

  • Nemanja Djuric
  • Lakesh Kansakar
  • Slobodan Vucetic
چکیده

Aerosol Optical Depth (AOD), recognized as one of the most important quantities in understanding and predicting the Earth’s climate, is estimated daily on a global scale by several Earth-observing satellite instruments. Each instrument has different coverage and sensitivity to atmospheric and surface conditions, and, as a result, the quality of AOD estimated by different instruments varies across the globe. We present a method for learning how to aggregate AOD estimations from multiple satellite instruments into a more accurate estimation. The proposed method is semi-supervised, as it is able to learn from a small number of labeled data, where labels come from a few accurate and expensive ground-based instruments, and a large number of unlabeled data. The method uses a latent variable to partition the data, so that in each partition the expert AOD estimations are aggregated in a different, optimal way. We applied the method to combine AOD estimations from 5 instruments aboard 4 satellites, and the results indicate that it can successfully exploit labeled and unlabeled data to produce accurate aggregated AOD estimations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Accurate Integration of Aerosol Predictions by Smoothing on a Manifold

Accurately measuring the aerosol optical depth (AOD) is essential for our understanding of the climate. Currently, AOD can be measured by (i) satellite instruments, which operate on a global scale but have limited accuracies; and (ii) ground-based instruments, which are more accurate but not widely available. Recent approaches focus on integrating measurements from these two sources to compleme...

متن کامل

Network Video Online Semi-supervised Classification Algorithm Based on Multiple View Co-training

As information integration based on multiple modal has to problems like complexity calculation process and low classification accuracy towards network video classification algorithm, came up with a network video online semi-supervised classification algorithm based on multiple view co-training. According to extract the features in text view and visual view, to the feature vector in each view, u...

متن کامل

Remote Sensing of Atmospheric Aerosol Distributions Using Supervised Texture Classification

This thesis presents a new technique to identify a 2D mask showing the extent of particulate aerosol distributions in satellite imagery. This technique uses a supervised texture classification approach, and utilises data from two distinct satellite sources. The vertical feature mask (VFM) product from the CALIPSO lidar, provides an accurate description of the aerosol content of the atmosphere b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013